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FIGURE 2 | The andesitic-dacitic volcano Soufriere Hills, Montserrat, erupted on 15 November 1995 after 350 years of repose. VT data from three sources are
consistent with initial and final episodes of accelerating VT event rate separated by an interval of constant event rate. (A) 01 January–31 July (time t
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FIGURE 3 | The number of VT events may accelerate with time (top), while
the mean deformation rate remains constant (bottom, gradient of broken line).
The example shows VT and deformation trends before the flank eruption of
Mauna Ulu on Kilauea, Hawaii, on 04 February 1972 (most VT events had
magnitudes between 1.5 and 4; Bell and Kilburn, 2011). In this case, the VT
number, 6N, increases exponentially with time t (in days; broken curve) as
1.17 exp (t/23.3); the mean daily VT event rate increases 0.05 exp (t/23.3).
The combination of exponential VT rate and constant deformation rate is
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FIGURE 5 | Changes in the total number of VT events with deformation for
precursors to eruption at (A) Rabaul, Papua New Guinea, 1971–1994 [data
from Robertson and Kilburn (2016)]: (B) El Hierro, Canary Islands, 18 July–12
October 2011 [data from Istituto Geográfica Nacional [IGN] (2011) and Sagiya
(2011)]; and (C) Mauna Ulu, Kilauea, Hawaii, 14 November 1971–04 February
1972, [data from Bell and Kilburn (2011)]. The quasi-elastic regime shows
exponential trends between VT number and the proxy for deformation,
yielding characteristic values of 0.53 m for uplift at Rabaul [6N / exp
(l/0.53)], 5 mm for displacement at El Hierro [6N / exp (l/5)] and 4.5 rad for
tilt at Kilauea [6N / exp (l/4.5)]. The inelastic regime shows linear trends. The
data are consistent with transition between regimes (star) when the ratio of
total deformation to characteristic value (l/lch) is about 4. See Figure 4 for
the normalized trends.

Philippines, and 1995 eruption of Soufriere Hills, on Montserrat
(Kilburn, 2003), implying the unlikely scenario of eruptions
through crust in compression. Extensional stresses are instead
anticipated in crust being deformed by a pressurizing magma

body and, as demonstrated below, the precursory sequences at
Pinatubo and Soufriere Hills can be explained more simply by
equating Sch instead with the tensile strength.

APPLICATIONS TO FIELD DATA

Changes in Seismicity With Deformation
Equations (4 and 5) describe the change from an exponential to
linear increase in VT number with deformation, corresponding
to the evolution from quasi-elastic to inelastic behavior. In the
quasi-elastic regime, 1Ssupp � 1S [Eq. (2)] and both Ssup and
S can be set to E+, the product of Young’s modulus and bulk
deformation. If ground movement, l, is proportional to the bulk
deformation, Eq. (4) yields exponential increases with ground
movement of both the change in VT seismicity and the total
number of VT events [Table 1, Eqs (T1) and (T2)]. In the inelastic
regime, the additional elastic strain supplied by Ssup is consumed
in faulting (Section 3). Changes in N and l now both measure
VT events, so dN/dl is constant and total VT number increases
linearly with ground movement [Figures 4, 5 and Table 1, and
Eq. (T3)].

The transition from quasi-elastic to inelastic behavior occurs
when the applied differential stress reaches its failure value, SF .
Since Sch = sT for tensile deformation, the transitional value for
S/Sch in Eq. (4) is expected to be SF/sT for crust being stretched.
Applying the Mohr–Coulomb–Griffith criterion for bulk failure,(Kilburn
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from the VT-deformation trends (Figures 4, 5), so reinforcing the
interpretation of deformation in tension (Figure 6).

The particular value of SF/sT in tension changes with
the geometry of failure. The generic Mohr–Coulomb–Griffith
criterion applies to failure along a plane (e.g., creating a new
failure plane or pulling opening a sealed fault) and values for
SF/sT are �4. Pressurized bodies, in contrast, rupture their
margins at values of SF/sT that change according to their shape;
for example, SF/sT is three for a sphere, but two for a long
vertical cylinder (Jaeger, 1969; Saada, 2009). The preferred field
values of 2–4 are thus consistent with the onset of bulk failure at
the margins of magma bodies, as well as the opening of healed
faults in crust being stretched by those bodies. In all cases, tensile
bulk failure requires the effective principal stresses (normal
stress�pore-fluid pressure) to be less than three times the tensile
strength (Figure 6). For a notional strength of 10 MPa, therefore,
the effective principal stress cannot exceed about 30 MPa, which
corresponds to maximum lithostatic depths of about 1.2 and 2 km
in dry and water-saturated crust. Tensile failure at greater depths
thus implies deformation of super-saturated crust with pore-fluid
pressures greater than hydrostatic (Shaw, 1980).
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FIGURE 9 | Flow-chart showing an example the proposed operational procedure for applying the elastic-brittle model to VT and deformation signals of unrest.
It assumes a transition from exponential to hyperbolic VT event rates after an amount of ground movement 4hch and, for a constant rate of stress supply, after
a time 4tch.
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